Multiphysics

Seminar

Advanced Structural Mechanics Using COMSOL Multiphysics

This course—now taking place over three days—will cover most of the structural analysis capabilities in COMSOL Multiphysics including large deformations, linear and nonlinear material models, contact mechanics, solver settings and convergence issues, multiphysics coupling, and best practices.&nbs

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics

This course—now taking place over three days—will review the physics areas relevant to medical devices and cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, such as biological material

Webinar

Electromagnetic Simulation of Inductive Sensors
An inductive eddy current sensor is a non-contact device that generates electromagnetic fields to detect changes in the properties of conductive materials, such as defects, thickness, or conductivity. This webinar will introduce the fundamentals of inductive sensors, present a detailed workflow for designing them for nondestructive testing, and much more.
Multiphysics Simulation of Electromagnetic Heating for Industrial Decarbonization
Electromagnetic heating is a critical technology for reducing emissions and energy use in manufacturing, which is the source of more than 30% of our greenhouse gas emissions. In this webinar, we will review various modes of electromagnetic heating, their underlying physics, and key methods for developing accurate multiphysics models of these technologies, and will present three helpful case studies.
Multiphysics Simulation of Electromagnetic Heating for Industrial Decarbonization - 2024
Electromagnetic heating is a critical technology for reducing emissions and energy use in manufacturing, which is the source of more than 30% of our greenhouse gas emissions. In this webinar, we will review various modes of electromagnetic heating, their underlying physics, and key methods for developing accurate multiphysics models of these technologies, and will present three helpful case studies.
Multiphysics Simulation of Electromagnetic Heating for Industrial Decarbonization - July 2024
Electromagnetic heating is a critical technology for reducing emissions and energy use in manufacturing, which is the source of more than 30% of our greenhouse gas emissions. In this webinar, we will review various modes of electromagnetic heating, their underlying physics, and key methods for developing accurate multiphysics models of these technologies, and will present three helpful case studies.

Case study

Active Mixing in a Microwell by Repetitive Pipetting
A simple way of mixing small volumes (microliters or milliliters) of reagents is by repeatedly dispensing and withdrawing solution from a microwell or tube. In this case study, we used a two-phase multiphysics simulation with coupled fluid flow and mass transfer to analyze the efficacy of this active mixing process.
Axial Permanent Magnet Coupling
Axial permanent magnet couplings are electromagnetic devices that transmit torque from a primary driver to a load without mechanical contact. Veryst used a finite element analysis (FEA) model to analyze the complex coupling nature of these magnetic devices to maximize the torque transmission
Bubble Entrapment in Microchannels
Bubbles trapped in microchannels can distort the fluid flow and impact the device performance. Veryst developed a multiphase CFD model to predict the effect of geometry and surface properties on the likelihood of bubble entrapment.
Calrod Thermal Analysis
How fast does a Calrod heat up and how high are the stresses during heating? To answer these questions, Veryst Engineering developed a coupled electric-thermal-structural multiphysics model of the Calrod, accounting for conduction, convection, and radiation.
Chemical Carryover in Microfluidic Devices
Removing reagents or sample from a previous processing step via a wash cycle is a common challenge in microfluidic assays used in diagnostic, genomic, biomedical, pharmaceutical and other applications. This case study shows how finite element simulations may be used to predict and optimize wash cycle performance.
Concentration Gradients in Microfluidic Devices
Controlling spatial variations in chemical concentration is important for designing and operating many microfluidic devices across a wide range of industries and applications including diagnostics, genomics, and pharmaceutics. In this case study, we show how simulations may be used to quantify and control concentration gradients in microfluidic devices.
Design and Simulation of a Catheter-Based Acoustic Ablation Device
Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.
Equation-Based Modeling of Thin Shells for Electromagnetic Simulations
For several of the electromagnetics interfaces provided with COMSOL Multiphysics, a single layer shell feature, the “Transition Boundary Condition,” is available. Veryst created custom expressions to extend this feature for multiple layers. In this case study we discuss the implementation of this new functionality, and the advantages of using such shells for electromagnetic modeling.
Immersed Beam Vibration
When a thin structure is immersed in a fluid, its natural frequencies, mode shapes, and damping characteristics may be significantly affected by the fluid. Predicting the dynamic behavior in this case requires a structural-acoustic analysis.

Can we help? Just want to keep in touch?