COMSOL

Seminar

Advanced Structural Mechanics Using COMSOL Multiphysics

This course—now taking place over three days—will cover most of the structural analysis capabilities in COMSOL Multiphysics including large deformations, linear and nonlinear material models, contact mechanics, solver settings and convergence issues, multiphysics coupling, and best practices.&nbs

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics

This course—now taking place over three days—will review the physics areas relevant to medical devices and cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, such as biological material

Webinar

Electromagnetic Simulation of Inductive Sensors
An inductive eddy current sensor is a non-contact device that generates electromagnetic fields to detect changes in the properties of conductive materials, such as defects, thickness, or conductivity. This webinar will introduce the fundamentals of inductive sensors, present a detailed workflow for designing them for nondestructive testing, and much more.

Case study

Axial Permanent Magnet Coupling
Axial permanent magnet couplings are electromagnetic devices that transmit torque from a primary driver to a load without mechanical contact. Veryst used a finite element analysis (FEA) model to analyze the complex coupling nature of these magnetic devices to maximize the torque transmission
Battery Cell Simulation for Electric Vehicles
Multiphysics simulation can be used to predict the performance and life cycle of battery cells across a wide variety of environmental conditions and states of charge, reducing experimental time and cost. In this case study, Veryst simulated a hybrid pulse power characterization test for an automotive lithium-ion battery cell.
Bubble Entrapment in Microchannels
Bubbles trapped in microchannels can distort the fluid flow and impact the device performance. Veryst developed a multiphase CFD model to predict the effect of geometry and surface properties on the likelihood of bubble entrapment.
CFD Modeling for a Hospital Room Ventilation System
Efficient ventilation can reduce a building’s energy consumption and minimize airborne pathogen transmission in hospital rooms.  Veryst used computational fluid dynamics (CFD) to simulate ventilation in a hospital room as well as the dispersion of particles and droplets.
Chaotic Mixing in Microfluidic Devices
Fast mixing of reagents in microfluidic channels and devices is important for DNA sequencing, mRNA vaccine production in small-batch pharmaceutical processes, and point-of-care diagnostics. In this case study, Veryst used computational fluid dynamics simulations to evaluate the mixing performance of three commonly used microfluidic mixers.
Chemical Carryover in Microfluidic Devices
Removing reagents or sample from a previous processing step via a wash cycle is a common challenge in microfluidic assays used in diagnostic, genomic, biomedical, pharmaceutical and other applications. This case study shows how finite element simulations may be used to predict and optimize wash cycle performance.
Cohesive Zone Model (CZM) Calibration
Cohesive zone modeling is a powerful tool for predicting delamination in adhesively bonded structures. Veryst engineers use their expertise in experimental and computational fracture mechanics to calibrate cohesive zone models for accurate prediction of adhesive failure.
Concentration Gradients in Microfluidic Devices
Controlling spatial variations in chemical concentration is important for designing and operating many microfluidic devices across a wide range of industries and applications including diagnostics, genomics, and pharmaceutics. In this case study, we show how simulations may be used to quantify and control concentration gradients in microfluidic devices.
Delamination in Microfluidic Valves
A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.
Design and Simulation of a Catheter-Based Acoustic Ablation Device
Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.
Designing MEMS Gyroscopes for Manufacturing
Manufacturing variations are of critical importance in MEMS design. In this MEMS gyroscope case study, Veryst created an approach to look at the effect of a range of manufacturing variations on MEMS devices using the same mesh. We also use semi-analytic equations to enable scalable modeling of the gyroscope electrostatic actuation and pick-off (which senses the motion produced by rotation).
Equation-Based Modeling of Thin Shells for Electromagnetic Simulations
For several of the electromagnetics interfaces provided with COMSOL Multiphysics, a single layer shell feature, the “Transition Boundary Condition,” is available. Veryst created custom expressions to extend this feature for multiple layers. In this case study we discuss the implementation of this new functionality, and the advantages of using such shells for electromagnetic modeling.

Can we help? Just want to keep in touch?