Polymers
Seminar
Testing and Modeling of Polymers: High Rate and Traditional Testing
Design engineers often use polymers in impact protection applications, and these designs experience high strain rates during impact. Polymers are viscoplastic by nature, so the material response is highly dependent on the strain rate. Collecting data on your polymer (elastomer, thermo
Advanced Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills to the most advanced material models available for polymers. We will review the foundations of continuum mechanics for material modeling and dive into advanced material model calibrations, including inverse calibrations, failure modeling, and anisotropic material modeling.Advanced Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills to the most advanced material models available for polymers. We will review the foundations of continuum mechanics for material modeling and dive into advanced material model calibrations, including inverse calibrations, failure modeling, and anisotropic material modeling.Advanced Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills to the most advanced material models available for polymers. We will review the foundations of continuum mechanics for material modeling and dive into advanced material model calibrations, including inverse calibrations, failure modeling, and anisotropic material modeling.Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills beyond hyperelastic material models. The class covers the foundations of continuum mechanics for material modeling, including hyperelasticity, metal plasticity, linear viscoelasticity, and advanced viscoplastic material models. The class also covers test methods and discuss how to design test plans for material modeling.Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills beyond hyperelastic material models. The class covers the foundations of continuum mechanics for material modeling, including hyperelasticity, metal plasticity, linear viscoelasticity, and advanced viscoplastic material models. The class also covers test methods and discuss how to design test plans for material modeling.Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills beyond hyperelastic material models. The class covers the foundations of continuum mechanics for material modeling, including hyperelasticity, metal plasticity, linear viscoelasticity, and advanced viscoplastic material models. The class also covers test methods and discuss how to design test plans for material modeling.Testing and Modeling of Polymers: High Rate and Traditional Testing
Design engineers often use polymers in impact protection applications, and these designs experience high strain rates during impact. Polymers are viscoplastic by nature, so the material response is highly dependent on the strain rate. Collecting data on your polymer (elastomer, thermo
Webinar
Polymers at Elevated Temperatures: Design Risks and Strategies
Exposing plastics and polymers to elevated temperatures can expose products to increased risk of failure. Knowing how to identify the correct material and deploy it in your products requires understanding the structure and analysis of polymers.