Turbulent Flow

Case study

Chaotic Mixing in Microfluidic Devices
Fast mixing of reagents in microfluidic channels and devices is important for DNA sequencing, mRNA vaccine production in small-batch pharmaceutical processes, and point-of-care diagnostics. In this case study, Veryst used computational fluid dynamics simulations to evaluate the mixing performance of three commonly used microfluidic mixers.
Hemolysis in a Converging-Diverging Nozzle
Red bloods cells may be damaged in medical devices due to high shear stresses induced by their flow through the device. Veryst simulated turbulent flow of a converging-diverging nozzle specified in an FDA benchmark study, incorporating different hemolysis models to determine which areas of the device may damage red blood cells.
Lipid Nanoparticle Self-assembly for mRNA Vaccine Production
Controlling the size of lipid nanoparticles (LNPs) in small-batch pharmaceutical processes is critical for delivery efficiency in mRNA vaccines, cancer therapies, and point-of-care diagnostics. In this case study, Veryst simulated solvent mixing and LNP self-assembly kinetics in a microfluidic mixer to predict the size distribution of LNPs across a range of process flow conditions.
Micromixing in a Multi-Inlet Vortex Mixer
Flash nanoprecipitation (FNP) is a novel method to produce nanoparticles for a variety of applications, including mRNA vaccine manufacturing. This case study demonstrates the high-fidelity prediction of micromixing rates, which are critical to controlling the size distribution of nanoparticles created using FNP.
Scaling Yield and Mixing in Chemical Reactors
Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.
Simulation of Heat Transfer From Impinging Turbulent Jets
Arrays of impinging fluid jets are an effective design solution for applications requiring large heat transfer rates. This case study demonstrates the ability of computational fluid dynamics (CFD) to predict heat transfer coefficient distributions and guide design choices to improve cooling uniformity.

Service

Chemical Reactors & Bioreactors
Chemical reactors and bioreactors involve many layers of physics, including fluid flow, heat transfer, chemical reactions, and porous media. A deep knowledge of the underlying physical phenomena is essential when scaling up reactors.
Computational Fluid Dynamics (CFD)
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.
Fluidic Mixing

Veryst has deep expertise in fluidic mixing processes, which we leverage for our clients across industries.  A fundamental aspect of mixing is the stretching and folding of the interface between initially separated substances.  This occurs in many forms a

Non-isothermal Flows

Modeling convective flow requires coupling fluid-flow with heat transfer.  The coupled processes can be very complex, particularly if the fluid flow is turbulent, or if the heat transfer involves processes such as boiling, evaporation, or mixed fluids with varying thermal properties.  F

Event

Veryst providing keynote address at COMSOL Day: Pharmaceutical Applications 2023
Dr. Matthew Hancock and Dr. Joseph Barakat presented "Simulation of Lipid Nanoparticle Self-Assembly for mRNA Vaccine Production" as the keynote address at this free, online event. They outlined modeling approaches and discussed how models can be used to guide process and design decisions.

Can we help? Just want to keep in touch?