Testing

Webinar

Practical Polymer Materials Structure and Characterization
This informative webinar is designed specifically for mechanical engineers who may not have extensive experience with polymer materials.  We'll delve into polymer structure and essential techniques such as DSC, FTIR, DMA, and TGA, equipping you with the knowledge to analyze key properties beyond basic specifications.  By mastering these methods, you'll gain a deeper understanding of polymer behavior, allowing you to make informed design decisions.

Case study

Accelerated Creep Testing of Polymers with Time-Temperature Superposition
A medical device designer wanted to forecast the creep performance of a plastic part for at least two years. Veryst tested the material using time-temperature superposition to characterize the material’s long-term performance quickly and efficiently to determine if the design performs adequately after two years.
Additively Manufactured Lattices
Additive manufacturing (AM) enables the production of complex lattice structures that cannot feasibly or economically be manufactured any other way. However, there are complicating factors that engineers are likely to confront when designing fine AM lattice structures: geometric inaccuracy and anisotropic material properties.
Adhesive Cure Troubleshooting with Differential Scanning Calorimetry (DSC)
An adhesive joint was failing in the field. Veryst used DSC to investigate and determined the root cause to be improper curing of the adhesive.
Adhesively Joining Difficult Materials with Corona Plasma Treatment
Joining polyolefins such as polyethylene and polypropylene with adhesives can be challenging. Polyolefins have low surface energy, which creates weak bonds between the polyolefin material and the adhesive. Veryst used corona discharge plasma treatment to improve the bond strength and create a more robust joint.
Anisotropy of 3D-Printed Polymers
Many additively manufactured polymers exhibit anisotropic mechanical properties which must be accounted for by engineers designing with these materials. This case study illustrates the importance of testing additively manufactured polymers at many orientations to identify the range of isotropic behavior as well as the optimal build orientation.
Broken Rail Train Derailment
A train derails with an ensuing fire and evacuation of a neighborhood. What was the root cause of the derailment?
Cohesive Zone Model (CZM) Calibration
Cohesive zone modeling is a powerful tool for predicting delamination in adhesively bonded structures. Veryst engineers use their expertise in experimental and computational fracture mechanics to calibrate cohesive zone models for accurate prediction of adhesive failure.
Composite Testing
Composite materials, such as carbon fiber reinforced polymers, provide a high strength-to-weight ratio for structures ranging from aerospace components to biomedical implants to consumer sports products. These materials require thorough and specialized methods for material testing and validation due to their anisotropic material properties.
Cranial Perforators
Medical devices, such as the cranial perforator here, show imperfections that are rejected by physicians. Veryst investigated the source of these imperfections and recommended steps to remove them.
Creep Testing of Polymers at Elevated Temperatures
Polymers are prone to deform slowly over long periods of time when subjected to applied load, a phenomenon known as creep. Over time, the deformation can grow so large that the part no longer functions as intended. Veryst utilized creep testing to compare material choices and set temperature specifications for polymers.
Design of Reinforced Hoses
A high-strength reinforced hose failed in service under normal operating conditions well before its intended design life. Inspections of the subject hose revealed that failure was mainly due to delamination.
FEA of Absorbable PLLA Bone Screw
The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.
FTIR Microscopy Analysis of Thermoplastic Solvent Bonding
Solvent bonding, although an effective way to join thermoplastics, can pose process challenges that reduce bond strength. Veryst uses FTIR microscopy to characterize the interface structure of solvent bonds, obtaining a “chemical image” of the solvent-bonded interface. The result is a full understanding of the bond and ways to improve its strength and reliability.
Guidewire Entanglement
Guidewires and stents can become entangled during deployment. Veryst assisted in determining whether product design plays any role in these events.

Can we help? Just want to keep in touch?