Simulation, Material Modeling

Case study

Cohesive Zone Model (CZM) Calibration
Cohesive zone modeling is a powerful tool for predicting delamination in adhesively bonded structures. Veryst engineers use their expertise in experimental and computational fracture mechanics to calibrate cohesive zone models for accurate prediction of adhesive failure.
Concentration Gradients in Microfluidic Devices
Controlling spatial variations in chemical concentration is important for designing and operating many microfluidic devices across a wide range of industries and applications including diagnostics, genomics, and pharmaceutics. In this case study, we show how simulations may be used to quantify and control concentration gradients in microfluidic devices.
Delamination in Microfluidic Valves
A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.
Design and Simulation of a Catheter-Based Acoustic Ablation Device
Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.
Designing MEMS Gyroscopes for Manufacturing
Manufacturing variations are of critical importance in MEMS design. In this MEMS gyroscope case study, Veryst created an approach to look at the effect of a range of manufacturing variations on MEMS devices using the same mesh. We also use semi-analytic equations to enable scalable modeling of the gyroscope electrostatic actuation and pick-off (which senses the motion produced by rotation).
Elastomer Foam Vibration Damper
Elastomer foams make excellent vibration dampers, but accurately designing these dampers requires an advanced material model. Veryst calibrated a PolyUMod® material model to design the vibration damper.
FEA of Absorbable PLLA Bone Screw
The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.
Fluid Flow Through Porous Media
Quantifying the rate of fluid flow through a porous matrix is important in many applications, including diagnostic devices, inkjet printing, textile fabrication, soil and groundwater remediation, and energy storage. In this project, Veryst used computational fluid dynamics to predict the transient rate of capillary imbibition through paper-based devices of varying geometry to help the client achieve the desired flow rate time profile for their fluidic device.
Golf Ball Impact Simulation
Accurate simulation of golf ball behavior during impact with a club is challenging due to the nonlinear impact event, the complexity of the polymeric ball material at the high strain rates experienced during impact, and the scarcity of material properties at these high strain rates. Veryst Engineering developed an accurate model that accounts for these complexities.
Hemolysis in a Converging-Diverging Nozzle
Red bloods cells may be damaged in medical devices due to high shear stresses induced by their flow through the device. Veryst simulated turbulent flow of a converging-diverging nozzle specified in an FDA benchmark study, incorporating different hemolysis models to determine which areas of the device may damage red blood cells.
High Strain Rate Testing of Polymers
This case study demonstrates the testing and calibration of a polycarbonate material at a high strain rate of 1000 sec-1. The testing was done with the Split Hopkinson Pressure Bar (SHPB) system and the calibration is performed with the MCalibration® software, originally developed by Veryst Engineering.
How a Pop-Up Rubber Toy Jumps – Analysis and Simulation
Pop-up rubber jumpers are fun toys that unexpectedly jump and pop when placed on a flat surface after they are inverted. The poppers are hemispherical rubber domes which can be easily inverted inside-out, a process that stores elastic energy in the rubber material. This case study showcases how simulation can effectively be used to unravel complex nonlinear phenomena such as the inversion and jump of a popper toy.
Immersed Beam Vibration
When a thin structure is immersed in a fluid, its natural frequencies, mode shapes, and damping characteristics may be significantly affected by the fluid. Predicting the dynamic behavior in this case requires a structural-acoustic analysis.
Infant Incubator Thermal Modeling
The main environmental factor affecting a premature neonate is thermo-neutrality, as the baby is incapable of regulating and maintaining his/her body temperature at a constant level. Veryst developed a computational model of heat transfer inside an infant incubator to optimize its design.
Insufflation Analysis
To compare the performance of two gas humidification devices, Veryst Engineering performed gas flow testing, device examination, and CFD analysis.

Can we help? Just want to keep in touch?