PolyUMod, MCalibration Software

Seminar

Testing and Modeling of Polymers: High Rate and Traditional Testing

Design engineers often use polymers in impact protection applications, and these designs experience high strain rates during impact.  Polymers are viscoplastic by nature, so the material response is highly dependent on the strain rate.  Collecting data on your polymer (elastomer, thermo

Advanced Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills to the most advanced material models available for polymers. We will review the foundations of continuum mechanics for material modeling and dive into advanced material model calibrations, including inverse calibrations, failure modeling, and anisotropic material modeling.
Advanced Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills to the most advanced material models available for polymers.  We will review the foundations of continuum mechanics for material modeling and dive into advanced material model calibrations, including inverse calibrations, failure modeling, and anisotropic material modeling.
Advanced Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills to the most advanced material models available for polymers.  We will review the foundations of continuum mechanics for material modeling and dive into advanced material model calibrations, including inverse calibrations, failure modeling, and anisotropic material modeling.
Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills beyond hyperelastic material models.  The class covers the foundations of continuum mechanics for material modeling, including hyperelasticity, metal plasticity, linear viscoelasticity, and advanced viscoplastic material models.  The class also covers test methods and discuss how to design test plans for material modeling. 
Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills beyond hyperelastic material models.  The class covers the foundations of continuum mechanics for material modeling, including hyperelasticity, metal plasticity, linear viscoelasticity, and advanced viscoplastic material models.  The class also covers test methods and discuss how to design test plans for material modeling. 
Testing and Modeling of Polymers for FE Simulation
This course is intended for finite element (FE) engineers that simulate polymers and are interested in advancing their modeling skills beyond hyperelastic material models.  The class covers the foundations of continuum mechanics for material modeling, including hyperelasticity, metal plasticity, linear viscoelasticity, and advanced viscoplastic material models.  The class also covers test methods and discuss how to design test plans for material modeling. 
Testing and Modeling of Polymers: High Rate and Traditional Testing

Design engineers often use polymers in impact protection applications, and these designs experience high strain rates during impact.  Polymers are viscoplastic by nature, so the material response is highly dependent on the strain rate.  Collecting data on your polymer (elastomer, thermo

Case study

Bottle Impact Failure and Material Modeling
Impact modeling of polymers is important given their use in consumer products as both structures and impact protection. Accurate FE models of impact events require high rate testing, advanced modeling, and a thorough understanding of polymer failure.
Elastomer Foam Vibration Damper
Elastomer foams make excellent vibration dampers, but accurately designing these dampers requires an advanced material model. Veryst calibrated a PolyUMod® material model to design the vibration damper.
FEA of Absorbable PLLA Bone Screw
The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.
Golf Ball Impact Simulation
Accurate simulation of golf ball behavior during impact with a club is challenging due to the nonlinear impact event, the complexity of the polymeric ball material at the high strain rates experienced during impact, and the scarcity of material properties at these high strain rates. Veryst Engineering developed an accurate model that accounts for these complexities.
High Rate Temperature Response of Polymers
Polymers exhibit significant temperature-dependent mechanical response. Veryst tested a PEEK material at multiple temperatures and calibrated the PolyUMod® Three Network (TN) material model for finite element simulation.
High Strain Rate Testing of Polymers
This case study demonstrates the testing and calibration of a polycarbonate material at a high strain rate of 1000 sec-1. The testing was done with the Split Hopkinson Pressure Bar (SHPB) system and the calibration is performed with the MCalibration® software, originally developed by Veryst Engineering.
PEEK Temperature Dependence
PEEK materials are increasingly used in a variety of industries with elevated temperature applications. This example shows how Veryst Engineering developed a temperature-dependent, nonlinear model of PEEK behavior for use in commercial FEA codes.

Can we help? Just want to keep in touch?