Multiphysics
Case study
Underfill Adhesive Flow and Cure
The microelectronics packaging industry relies heavily on adhesive bonding to assemble electronic components. Veryst built a COMSOL Multiphysics model of a thermocompression bonding process to help reduce bonding cycle time by simultaneously optimizing material and process variables.Service
Acoustics
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.Application Development
Customized simulation applications ("apps") can simplify the product design process and accelerate its development cycle. Veryst's deep expertise with simulation and with the Application Builder in COMSOL Multiphysics enables us to build useful and reliable apps that are highly customized to our clients' needs.Chemical Reactors & Bioreactors
Chemical reactors and bioreactors involve many layers of physics, including fluid flow, heat transfer, chemical reactions, and porous media. A deep knowledge of the underlying physical phenomena is essential when scaling up reactors.Computational Fluid Dynamics (CFD)
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.Electromagnetics
Veryst provides expert consulting services in modeling electromagnetic fields. Our expertise includes modeling electrostatics, magnetostatics, rotating machinery, and similar electromagnetic devices for power, energy, automotive, consumer electronics, biomedical, and many other industries. We use advanced numerical techniques to design, optimize, and validate our clients’ electromagnetic devices to function as digital twins.Failure Analysis
The consultants at Veryst provide failure and root cause analyses using core engineering disciplines to evaluate different failure scenarios. Engineering specialties we apply to failure analyses include: mechanical engineering, materials science (metallurgy, ceramics, polymer science, compo
Fluidic Mixing
Veryst has deep expertise in fluidic mixing processes, which we leverage for our clients across industries. A fundamental aspect of mixing is the stretching and folding of the interface between initially separated substances. This occurs in many forms a
Fluid–Structure Interaction
Fluid-structure interaction refers to the analyses involving simultaneous fluid flow and solid deformation. Veryst Engineering has worked on a wide range of FSI problems of different complexities.Microfluidics
Veryst offers a comprehensive approach to solving problems in microfluidic device development. We employ an array of modeling tools, such as scaling arguments, analytical formulas, computational simulations, and laboratory testing to inform the design and integration of common components.Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.Non-isothermal Flows
Modeling convective flow requires coupling fluid-flow with heat transfer. The coupled processes can be very complex, particularly if the fluid flow is turbulent, or if the heat transfer involves processes such as boiling, evaporation, or mixed fluids with varying thermal properties. F
Polymer Analysis
Veryst provides expert services for product design, manufacturing processes, and failure analysis of polymeric components. Our expertise includes experimental characterization, computer modeling, and failure analysis. Our work is based on advanced characterization and physically-based computer models to solve industrial problems involving polymer systems.Simulation & Analysis
Veryst provides expertise in many aspects of simulation and analysis for use in product design, manufacturing processes, and failure analysis. This includes modeling and analysis involving polymer materials, multiphysics modeling, finite element analysis, computational fluid dynamics, compu