COMSOL

Case study

Simulating Compression Springs in a COMSOL Multiphysics Application
The design of compression springs is tied to their intended function and the acceptable levels of deformation and stress that the spring can withstand. Veryst designed and evaluated a standalone simulation application to capture important qualities, such as spring rate, natural frequencies, and estimated fatigue life, for both helical and conical compression springs.
Strength of Additively Manufactured Parts
Veryst can predict the ultimate strength and failure modes of design concepts generated using topology optimization and produced using additive manufacturing. We use advanced finite element analysis (FEA) that accounts for the nonlinear behavior of the material being used to make the part.
Theoretical and Numerical Analysis of Low-Voltage Cascade Electroosmotic Pumps
Electroosmotic (EO) pumps are driven purely by electric fields and have no moving parts. Cascading EO pumps reduces voltage requirements. Veryst used computational fluid dynamics (CFD) and semi-analytical equivalent circuit theory to analyze the complex behavior of these pumps.
Thermal Management in Battery Packs
Thermal management is crucially important for battery performance in consumer products, electric vehicles, and grid-level storage systems. In this case study, Veryst used multiphysics simulations to evaluate different thermal management strategies in prismatic and cylindrical battery packs.
Transdermal Permeation Enhancers
Permeation enhancers are used to improve drug delivery through the skin by altering the structure and dynamics of the skin. Veryst developed a finite element model of drug diffusion from an adhesive patch that accounts for the effect of permeation enhancers.
Underfill Adhesive Flow and Cure
The microelectronics packaging industry relies heavily on adhesive bonding to assemble electronic components. Veryst built a COMSOL Multiphysics model of a thermocompression bonding process to help reduce bonding cycle time by simultaneously optimizing material and process variables.

Service

Acoustics
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.
Application Development
Customized simulation applications ("apps") can simplify the product design process and accelerate its development cycle. Veryst's deep expertise with simulation and with the Application Builder in COMSOL Multiphysics enables us to build useful and reliable apps that are highly customized to our clients' needs.
Customized Computational Solutions
Veryst uses its extensive expertise in simulation and analysis to develop customized computational solutions. Clients developing new materials or new production processes are at a disadvantage when suitable simulation tools are not yet available. Veryst can develop unique, customized solutions such as simulation applications ("apps"), new material subroutines, and custom algorithms.
Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.
Structural Finite Element Analysis
Veryst offers leading expertise in advanced finite element modeling, particularly for complex, nonlinear problems. We can address problems that other finite element analysis consultants either cannot or are not sufficiently experienced to do well.
Tests by FEA Software
Veryst can specify a test program—a standard combination of tests—that captures your material’s response for use with a particular material model in a variety of finite element software packages. We have developed packages for many common constitutive models, but can customize the test plan to any model.

News item

Blog features Veryst's work modeling fluid-structure interaction in a heart valve
Veryst’s modeling and simulation work was featured in a COMSOL blog that describes how Veryst modeled the way in which a heart valve opens and closes in response to fluid flow, providing insight that can be used to improve the design of artificial heart valves.
COMSOL blog features Veryst's work modeling, simulating bubble entrapment
Veryst’s modeling and simulation work was featured in a COMSOL blog titled “Preventing Bubble Entrapment in Microfluidic Devices Using Simulation.”  The blog describes how Veryst modeled different microchannel geometries and simulated bubble movement, providing insight that can be used to improve the design of microfluidic devices. 

Can we help? Just want to keep in touch?