Radio frequency tissue ablation is a commonly used and minimally invasive tissue treatment procedure. Accurately modeling this kind of coupled multiphysics problem is often challenging. Veryst developed a COMSOL Multiphysics model accounting for heat transfer, electric field, and fluid flow to study the RF tissue ablation problem where an electrode is targeting a tissue close to a blood vessel.
Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.
Shear thickening and jamming in dense particulate suspensions can lead to undesirable processing inefficiencies and failure modes across a variety of product applications, including inkjet printer nozzles, medical autoinjectors, and porous filtration systems. In this case study, Veryst simulated the flow of a dense suspension through a syringe needle to evaluate the conditions that lead to shear jamming.
The design of compression springs is tied to their intended function and the acceptable levels of deformation and stress that the spring can withstand. Veryst designed and evaluated a standalone simulation application to capture important qualities, such as spring rate, natural frequencies, and estimated fatigue life, for both helical and conical compression springs.
Veryst can predict the ultimate strength and failure modes of design concepts generated using topology optimization and produced using additive manufacturing. We use advanced finite element analysis (FEA) that accounts for the nonlinear behavior of the material being used to make the part.
Electroosmotic (EO) pumps are driven purely by electric fields and have no moving parts. Cascading EO pumps reduces voltage requirements. Veryst used computational fluid dynamics (CFD) and semi-analytical equivalent circuit theory to analyze the complex behavior of these pumps.
Thermal management is crucially important for battery performance in consumer products, electric vehicles, and grid-level storage systems. In this case study, Veryst used multiphysics simulations to evaluate different thermal management strategies in prismatic and cylindrical battery packs.
Permeation enhancers are used to improve drug delivery through the skin by altering the structure and dynamics of the skin. Veryst developed a finite element model of drug diffusion from an adhesive patch that accounts for the effect of permeation enhancers.
The microelectronics packaging industry relies heavily on adhesive bonding to assemble electronic components. Veryst built a COMSOL Multiphysics model of a thermocompression bonding process to help reduce bonding cycle time by simultaneously optimizing material and process variables.
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.
Customized simulation applications ("apps") can simplify the product design process and accelerate its development cycle. Veryst's deep expertise with simulation and with the Application Builder in COMSOL Multiphysics enables us to build useful and reliable apps that are highly customized to our clients' needs.
Veryst uses its extensive expertise in simulation and analysis to develop customized computational solutions. Clients developing new materials or new production processes are at a disadvantage when suitable simulation tools are not yet available. Veryst can develop unique, customized solutions such as simulation applications ("apps"), new material subroutines, and custom algorithms.
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.
Veryst has extensive experience in designing and developing electromagnetic heating systems, leveraging deep expertise in electromagnetics, heat transfer, and computational modeling. We provide practical recommendations to help clients design more efficient and effective thermal systems across various industries.
Veryst offers leading expertise in advanced finite element modeling, particularly for complex, nonlinear problems. We can address problems that other finite element analysis consultants either cannot or are not sufficiently experienced to do well.