CFD (Computational Fluid Dynamics)
Case study
Reagent Dry-Down in a Microwell
Manufacturing medical diagnostic kits involves drying reagents to be reconstituted later, during use. For this project, Veryst simulated reagent dry-down of a small volume of liquid in a microwell to investigate the effect of process parameters including oven temperature and humidity.Safe Distance? A Simulation of the Trajectory of Exhaled Droplets
Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.Scaling Yield and Mixing in Chemical Reactors
Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.Shear Jamming in Dense Suspensions
Shear thickening and jamming in dense particulate suspensions can lead to undesirable processing inefficiencies and failure modes across a variety of product applications, including inkjet printer nozzles, medical autoinjectors, and porous filtration systems. In this case study, Veryst simulated the flow of a dense suspension through a syringe needle to evaluate the conditions that lead to shear jamming.Simulation of Heat Transfer From Impinging Turbulent Jets
Arrays of impinging fluid jets are an effective design solution for applications requiring large heat transfer rates. This case study demonstrates the ability of computational fluid dynamics (CFD) to predict heat transfer coefficient distributions and guide design choices to improve cooling uniformity.Tank Sloshing Simulation
During sloshing, liquid exerts a dynamic force on the surrounding vessel, which may cause leakage or damage to the vessel or its supporting structure. We used a mesh-free smoothed particle hydrodynamics (SPH) method to predict liquid sloshing and its effect on the deformation and stresses in a vessel.Theoretical and Numerical Analysis of Low-Voltage Cascade Electroosmotic Pumps
Electroosmotic (EO) pumps are driven purely by electric fields and have no moving parts. Cascading EO pumps reduces voltage requirements. Veryst used computational fluid dynamics (CFD) and semi-analytical equivalent circuit theory to analyze the complex behavior of these pumps.Service
Computational Fluid Dynamics (CFD)
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.Fluidic Mixing
Veryst has deep expertise in fluidic mixing processes, which we leverage for our clients across industries. A fundamental aspect of mixing is the stretching and folding of the interface between initially separated substances. This occurs in many forms a
Microfluidics
Veryst offers a comprehensive approach to solving problems in microfluidic device development. We employ an array of modeling tools, such as scaling arguments, analytical formulas, computational simulations, and laboratory testing to inform the design and integration of common components.Simulation & Analysis
Veryst provides expertise in many aspects of simulation and analysis for use in product design, manufacturing processes, and failure analysis. This includes modeling and analysis involving polymer materials, multiphysics modeling, finite element analysis, computational fluid dynamics, compu
Thermal Analysis
Veryst offers clients consulting services in thermal modeling of both solid and fluid systems, including interactions between these systems. We employ state-of-the-art finite element analysis and computational fluid dynamics methods both to analyze and visualize the thermal profiles within client systems. Our simulation capabilities also include hard-to-solve coupled problems, including the interactions between thermal and structural effects and fluid movements resulting from thermal gradients.News item
Article in NASA Software Tech Briefs
Veryst Engineering published an article in the September 2013 issue of NASA Software Tech Briefs titled "Conjugate Thermal Analysis of a Generic LED Light Bulb." The article illustrates how a coupled thermal CFD (computational fluid dynamics) analysis is used to predict the temperature vari