This course—now taking place over three days—will review the physics areas relevant to medical devices and cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry. It covers modeling challenges specific to medical devices, such as biological material
This webinar will introduce how to model fluid mixing and nanoparticle self-assembly for mRNA vaccine production using COMSOL Multiphysics and Ansys Fluent. Such models can rapidly expedite experimental design for small-batch or production-scale applications. 
In this free, 45-min webinar, we will discuss some of the challenges engineers face when obtaining mechanical properties of materials and components used in medical devices and we will share strategies for designing non-standard mechanical test methods to meet these challenges.
A simple way of mixing small volumes (microliters or milliliters) of reagents is by repeatedly dispensing and withdrawing solution from a microwell or tube. In this case study, we used a two-phase multiphysics simulation with coupled fluid flow and mass transfer to analyze the efficacy of this active mixing process.
Bioabsorbable materials, such as polylactic acid (PLA), are finding increasing applications in medical devices. These polymers exhibit a nonlinear anisotropic viscoplastic response when deformed, which requires a sophisticated material model for accurate finite element predictions.
Removing reagents or sample from a previous processing step via a wash cycle is a common challenge in microfluidic assays used in diagnostic, genomic, biomedical, pharmaceutical and other applications. This case study shows how finite element simulations may be used to predict and optimize wash cycle performance.
Controlling spatial variations in chemical concentration is important for designing and operating many microfluidic devices across a wide range of industries and applications including diagnostics, genomics, and pharmaceutics. In this case study, we show how simulations may be used to quantify and control concentration gradients in microfluidic devices.
Medical devices, such as the cranial perforator here, show imperfections that are rejected by physicians. Veryst investigated the source of these imperfections and recommended steps to remove them.
Polymers are prone to deform slowly over long periods of time when subjected to applied load, a phenomenon known as creep. Over time, the deformation can grow so large that the part no longer functions as intended. Veryst utilized creep testing to compare material choices and set temperature specifications for polymers.
A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.
Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.
The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.
Quantifying the rate of fluid flow through a porous matrix is important in many applications, including diagnostic devices, inkjet printing, textile fabrication, soil and groundwater remediation, and energy storage. In this project, Veryst used computational fluid dynamics to predict the transient rate of capillary imbibition through paper-based devices of varying geometry to help the client achieve the desired flow rate time profile for their fluidic device.
Guidewires and stents can become entangled during deployment. Veryst assisted in determining whether product design plays any role in these events.
Red bloods cells may be damaged in medical devices due to high shear stresses induced by their flow through the device. Veryst simulated turbulent flow of a converging-diverging nozzle specified in an FDA benchmark study, incorporating different hemolysis models to determine which areas of the device may damage red blood cells.