Case Studies

Polymer Forming Simulation

Obtaining accurate results from finite element analyses of polymers is not easy. Polymers are often highly temperature- and rate-dependent, exhibiting significant stress-relaxation, creep, and recovery. In this forming case study, Veryst examines the steps required to produce an accurate constitutive model of an example polymer, polyether ether ketone (PEEK), and shows the consequences of oversimplification.

Polymer Material Models in Different FE Packages

All commercial FE packages provide material models for polymers, but Veryst Engineering’s PolyUMod® material library has advanced material models at the leading edge of polymer mechanics. We demonstrate the accuracy of a PolyUMod material model with native material models from Abaqus, ANSYS, and LS-DYNA.

Preventing Cracking in Cold Forged Components

Cold forging often results in the development of high residual stresses that might lead to premature cracking of the cold forged component. Machining, which often follows cold forging, results in the re-distribution of residual stresses. We developed an FE-based strategy capable of predicting the residual stresses in the final machined configuration of cold forged components.

Reagent Dry-Down in a Microwell

Manufacturing medical diagnostic kits involves drying reagents to be reconstituted later, during use. For this project, Veryst simulated reagent dry-down of a small volume of liquid in a microwell to investigate the effect of process parameters including oven temperature and humidity.

Residual Tensile Strain Measurement in Polymers

Materials that have been deformed past their yield point and into the plastic strain region often display permanent deformation upon removal of load. How much of this deformation is truly permanent? Veryst has developed a method to measure the residual strain of materials following unloading as a function of time.

RF Tissue Ablation Simulation

Radio frequency tissue ablation is a commonly used and minimally invasive tissue treatment procedure. Accurately modeling this kind of coupled multiphysics problem is often challenging. Veryst developed a COMSOL Multiphysics model accounting for heat transfer, electric field, and fluid flow to study the RF tissue ablation problem where an electrode is targeting a tissue close to a blood vessel.

Safe Distance? A Simulation of the Trajectory of Exhaled Droplets

Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.

Scaling Yield and Mixing in Chemical Reactors

Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.

Can we help? Just want to keep in touch?