Case Studies

Sea Floor Energy Harvesting

Veryst Engineering developed proof-of-concept models for a device for harvesting energy from constant low speed ocean floor currents in order to power ocean sensors.

Shear Jamming in Dense Suspensions

Shear thickening and jamming in dense particulate suspensions can lead to undesirable processing inefficiencies and failure modes across a variety of product applications, including inkjet printer nozzles, medical autoinjectors, and porous filtration systems.  In this case study, Veryst simulated the flow of a dense suspension through a syringe needle to evaluate the conditions that lead to shear jamming.

Silicon Nitride Thin Film Elastic Modulus

Knowledge of thin film mechanical properties is important for device operation, reliability, and simulation. Veryst measured the elastic modulus of a low stress silicon nitride thin film using nanoindentation and validated the technique with atomic force microscopy.

Simulating Compression Springs in a COMSOL Multiphysics Application

The design of compression springs is tied to their intended function and the acceptable levels of deformation and stress that the spring can withstand. Veryst designed and evaluated a standalone simulation application to capture important qualities, such as spring rate, natural frequencies, and estimated fatigue life, for both helical and conical compression springs.

Simulation of Heat Transfer From Impinging Turbulent Jets

Arrays of impinging fluid jets are an effective design solution for applications requiring large heat transfer rates. This case study demonstrates the ability of computational fluid dynamics (CFD) to predict heat transfer coefficient distributions and guide design choices to improve cooling uniformity.

Small-Scale Friction Measurement

Medical devices, combination products, consumer products, and manufacturing processes often include components that slide past each other. These products and processes can fail when the friction forces between the surfaces are too high, due to surface roughness, lubrication, materials, or environmental conditions. Here Veryst introduces a specialized fixture to measure the friction between a small metal wire and three polymer materials, to select a backup supplier for dual sourcing that would maintain low friction in a medical device.

Soccer Ball Impact Simulation

Some of the most sensational goals in soccer history came from free-kicks and long shots. (Remember Roberto Carlos’ famous 1998 free-kick?) Veryst investigated the effect of friction between ball and boot, the ball’s internal pressure, and ball materials on the ball’s rotational velocity to understand ball/boot interaction.

Soft Fluidic Grippers

How does a soft fluidic gripper perform when inflated and how does it interact with its environment? This is a challenging, yet essential, question to the design and integration of soft robotics in the industry. Veryst Engineering developed a finite deformation Abaqus model to study the behavior, performance, and stability of soft fluidic grippers, providing insight to the design and assessment of soft robots and devices.

Strength of Additively Manufactured Parts

Veryst can predict the ultimate strength and failure modes of design concepts generated using topology optimization and produced using additive manufacturing. We use advanced finite element analysis (FEA) that accounts for the nonlinear behavior of the material being used to make the part.

Can we help? Just want to keep in touch?