Case Studies

High Rate 3-Point Bending of Porcine Ribs

Determining the mechanical behavior of bones can be challenging given the complexity of the materials that make up the bone and the geometry. Assessing the mechanical behavior of whole bones, especially rib bones, can aid in understanding the relationship between loading and injury risk as many rib injuries are due to impact type events.

High Rate Foam Testing

Foam materials often exhibit high strain rate sensitivity, with large increases in stiffness as materials are loaded at higher rates. Veryst performed high-rate compression tests of a foam material, reaching impact strain rates of over 1500/s.

High Rate Temperature Response of Polymers

Polymers exhibit significant temperature-dependent mechanical response. Veryst tested a PEEK material at multiple temperatures and calibrated the PolyUMod® Three Network (TN) material model for finite element simulation.

High Strain Rate Testing of Fiber-Reinforced Thermoplastics

Understanding composite materials’ impact response as a function of fiber direction is important for a wide range of uses, from automotive applications for crashworthiness to consumer product uses for drop and impact resistance. Veryst evaluated the high strain rate response of both glass fiber and carbon fiber reinforced PEEK (polyether ether ketone) using the Split Hopkinson Pressure Bar test method.

High Strain Rate Testing of Polymers

This case study demonstrates the testing and calibration of a polycarbonate material at a high strain rate of 1000 sec-1. The testing was done with the Split Hopkinson Pressure Bar (SHPB) system and the calibration is performed with the MCalibration® software, originally developed by Veryst Engineering.

How a Pop-Up Rubber Toy Jumps – Analysis and Simulation

Pop-up rubber jumpers are fun toys that unexpectedly jump and pop when placed on a flat surface after they are inverted. The poppers are hemispherical rubber domes which can be easily inverted inside-out, a process that stores elastic energy in the rubber material. This case study showcases how simulation can effectively be used to unravel complex nonlinear phenomena such as the inversion and jump of a popper toy.

Immersed Beam Vibration

When a thin structure is immersed in a fluid, its natural frequencies, mode shapes, and damping characteristics may be significantly affected by the fluid. Predicting the dynamic behavior in this case requires a structural-acoustic analysis.

Impact Fracture Toughness of Adhesive Joints

Veryst developed a new test method for measuring fracture toughness under impact loading that does not require measurement of load or crack length. We have used this method to help clients in the automotive and electronics industry understand how adhesives fail under impact conditions.

Infant Incubator Thermal Modeling

The main environmental factor affecting a premature neonate is thermo-neutrality, as the baby is incapable of regulating and maintaining his/her body temperature at a constant level. Veryst developed a computational model of heat transfer inside an infant incubator to optimize its design.

Can we help? Just want to keep in touch?