Case Studies

Insufflation Analysis

To compare the performance of two gas humidification devices, Veryst Engineering performed gas flow testing, device examination, and CFD analysis.

Laminar Static Mixer Analysis

Laminar static mixers are often employed in industrial environments when the mixing of two or more fluids is required. However, their performance is impossible to analyze with a pure CFD approach. Veryst, in collaboration with Nordson EFD, developed a unique computational modeling tool to evaluate and optimize the design of such mixers.

LED Light Bulb Heat Transfer Simulation

Both the efficiency and life of an LED bulb drop when operated at high temperature. Given the wide range of possible shapes and sizes of heat sinks, Veryst Engineering developed a rapid and effective tool to compare design alternatives and estimate LED temperatures.

Lipid Nanoparticle Self-assembly for mRNA Vaccine Production

Controlling the size of lipid nanoparticles (LNPs) in small-batch pharmaceutical processes is critical for delivery efficiency in mRNA vaccines, cancer therapies, and point-of-care diagnostics. In this case study, Veryst simulated solvent mixing and LNP self-assembly kinetics in a microfluidic mixer to predict the size distribution of LNPs across a range of process flow conditions.

Material Models for Hot Forging Simulation

Hot forging simulations depend critically on the correct selection of metal material models. Veryst illustrates this dependence through a turbine disk forging simulation using both rate-dependent and rate-independent material models.

Micromixing in a Multi-Inlet Vortex Mixer

Flash nanoprecipitation (FNP) is a novel method to produce nanoparticles for a variety of applications, including mRNA vaccine manufacturing. This case study demonstrates the high-fidelity prediction of micromixing rates, which are critical to controlling the size distribution of nanoparticles created using FNP.

Modeling a MEMS LiDAR Mirror

MEMS mirrors raster the laser beam in many next-generation LiDAR system designs. Constructing a finite element model of a MEMS mirror is challenging, as it is difficult to represent the large number of comb fingers in the comb drives that actuate these devices. Veryst addressed this problem by using mixed analytic and finite element approaches to construct accurate finite element models.

Multiphysics Analysis of a MEMS Switch

The responses of a MEMS switch immersed in fluids differs from that in a vacuum. Veryst Engineering developed a coupled electrostatic-fluid-structure interaction model to investigate the switch response time, deformation, and energy dissipation.

Can we help? Just want to keep in touch?