Case Studies

Elastomer Foam Vibration Damper

Elastomer foams make excellent vibration dampers, but accurately designing these dampers requires an advanced material model. Veryst calibrated a PolyUMod® material model to design the vibration damper.

Equation-Based Modeling of Thin Shells for Electromagnetic Simulations

For several of the electromagnetics interfaces provided with COMSOL Multiphysics, a single layer shell feature, the “Transition Boundary Condition,” is available. Veryst created custom expressions to extend this feature for multiple layers. In this case study we discuss the implementation of this new functionality, and the advantages of using such shells for electromagnetic modeling.

Fatigue Failure of a Plastic Lever

A plastic lever on a consumer product failed unexpectedly in service. Veryst determined the root cause of the failure and provided design recommendations to prevent similar failures from occurring again.

FEA of Absorbable PLLA Bone Screw

The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.

Fluid Flow Through Porous Media

Quantifying the rate of fluid flow through a porous matrix is important in many applications, including diagnostic devices, inkjet printing, textile fabrication, soil and groundwater remediation, and energy storage. In this project, Veryst used computational fluid dynamics to predict the transient rate of capillary imbibition through paper-based devices of varying geometry to help the client achieve the desired flow rate time profile for their fluidic device.

FTIR Microscopy Analysis of Thermoplastic Solvent Bonding

Solvent bonding, although an effective way to join thermoplastics, can pose process challenges that reduce bond strength. Veryst uses FTIR microscopy to characterize the interface structure of solvent bonds, obtaining a “chemical image” of the solvent-bonded interface. The result is a full understanding of the bond and ways to improve its strength and reliability.

Golf Ball Impact Simulation

Accurate simulation of golf ball behavior during impact with a club is challenging due to the nonlinear impact event, the complexity of the polymeric ball material at the high strain rates experienced during impact, and the scarcity of material properties at these high strain rates. Veryst Engineering developed an accurate model that accounts for these complexities.

Guidewire Entanglement

Guidewires and stents can become entangled during deployment. Veryst assisted in determining whether product design plays any role in these events.

Hemolysis in a Converging-Diverging Nozzle

Red bloods cells may be damaged in medical devices due to high shear stresses induced by their flow through the device. Veryst simulated turbulent flow of a converging-diverging nozzle specified in an FDA benchmark study, incorporating different hemolysis models to determine which areas of the device may damage red blood cells.

Can we help? Just want to keep in touch?