High performance liquid chromatography (HPLC) is a high pressure liquid based analytical technique used to separate, identify, and precisely quantify components in complex chemical or biological mixtures, especially in pharmaceutical, clinical, food, environmental, and forensic testing. Particle size distributions can impact HPLC performance, including column efficiency and pressure drop. In this case study, Veryst developed a multi-scale simulation of flow, dispersion, and adsorption within a chromatographic bed, accounting for particle size dispersity and intraparticle diffusion.
Water electrolysis for hydrogen production is a key enabling technology for global decarbonization. In this case study, Veryst simulated the electrical current distribution and gas generation in a proton exchange membrane electrolyzer stack to identify potential process inefficiencies and recommend optimal operating conditions
The performance of peristaltic pumps is influenced by tube dimensions, tube material, rotary mechanism, and fluid properties. Veryst Engineering developed a strongly coupled fluid-structure interaction model that captures the deformation of the tube, rollers, and fluid, including contact.
Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.
Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.
Shear thickening and jamming in dense particulate suspensions can lead to undesirable processing inefficiencies and failure modes across a variety of product applications, including inkjet printer nozzles, medical autoinjectors, and porous filtration systems. In this case study, Veryst simulated the flow of a dense suspension through a syringe needle to evaluate the conditions that lead to shear jamming.
Cavitation, the formation and collapse of vapor bubbles in a liquid due to local pressure drops, can limit performance and reliability in medical devices, energy systems, and process equipment—causing unwanted wear, vibration, and efficiency loss. In this case study, we applied high-fidelity multiphase computational fluid dynamics simulations to capture the unsteady dynamics of cavitation in confined geometries and demonstrate how simulation can guide the development of safer, more efficient, and longer-lasting products and systems.
The physics of droplet formation during dripping, jetting, and atomization governs the accuracy and consistency of a wide array of fluid dispensing and spray technologies. In this case study, we apply high-fidelity multiphase flow simulations to capture the full droplet formation cycle and reveal mechanisms that control necking, breakup, and satellite drop formation. The results demonstrate how simulation can guide the design of more precise, efficient, and reliable fluid dispensing and spray technologies.
Vial filling—the precise transfer of liquids into vials under controlled conditions—is a common process step in pharmaceutical, diagnostic, and laboratory applications, where product quality and regulatory compliance demand exceptional consistency and reliability. This case study compares two filling strategies using moving and fixed inlet nozzles, demonstrating how controlling the distance between the nozzle and the liquid surface can produce clean fills or, conversely, lead to undesirable outcomes such as dripping, splashing, and air entrainment. These results provide practical guidance for engineers seeking to refine filling protocols, minimize waste, and ensure consistently reliable production.
The microelectronics packaging industry relies heavily on adhesive bonding to assemble electronic components. Veryst built a COMSOL Multiphysics model of a thermocompression bonding process to help reduce bonding cycle time by simultaneously optimizing material and process variables.
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.
Veryst assists clients with the selection of adhesive materials, development of bonding processes, and mechanical analysis of interfaces. We employ chemical characterization, mechanical testing, and advanced computational methods to design robust adhesively bonded structures and to understand delamination failures.
Chemical reactors and bioreactors involve many layers of physics, including fluid flow, heat transfer, chemical reactions, and porous media. A deep knowledge of the underlying physical phenomena is essential when scaling up reactors.
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.
Veryst provides expert consulting services in modeling electromagnetic fields. Our expertise includes modeling electrostatics, magnetostatics, rotating machinery, and similar electromagnetic devices for power, energy, automotive, consumer electronics, biomedical, and many other industries. We use advanced numerical techniques to design, optimize, and validate our clients’ electromagnetic devices to function as digital twins.