Polymers

Case study

FTIR Microscopy Analysis of Thermoplastic Solvent Bonding
Solvent bonding, although an effective way to join thermoplastics, can pose process challenges that reduce bond strength. Veryst uses FTIR microscopy to characterize the interface structure of solvent bonds, obtaining a “chemical image” of the solvent-bonded interface. The result is a full understanding of the bond and ways to improve its strength and reliability.
Golf Ball Impact Simulation
Accurate simulation of golf ball behavior during impact with a club is challenging due to the nonlinear impact event, the complexity of the polymeric ball material at the high strain rates experienced during impact, and the scarcity of material properties at these high strain rates. Veryst Engineering developed an accurate model that accounts for these complexities.
High Rate Foam Testing
Foam materials often exhibit high strain rate sensitivity, with large increases in stiffness as materials are loaded at higher rates. Veryst performed high-rate compression tests of a foam material, reaching impact strain rates of over 1500/s.
High Strain Rate Testing of Fiber-Reinforced Thermoplastics
Understanding composite materials’ impact response as a function of fiber direction is important for a wide range of uses, from automotive applications for crashworthiness to consumer product uses for drop and impact resistance. Veryst evaluated the high strain rate response of both glass fiber and carbon fiber reinforced PEEK (polyether ether ketone) using the Split Hopkinson Pressure Bar test method.
High Strain Rate Testing of Polymers
This case study demonstrates the testing and calibration of a polycarbonate material at a high strain rate of 1000 sec-1. The testing was done with the Split Hopkinson Pressure Bar (SHPB) system and the calibration is performed with the MCalibration® software, originally developed by Veryst Engineering.
PEEK Temperature Dependence
PEEK materials are increasingly used in a variety of industries with elevated temperature applications. This example shows how Veryst Engineering developed a temperature-dependent, nonlinear model of PEEK behavior for use in commercial FEA codes.
Polymer Foam Testing & Modeling
Polymer foams may exhibit extreme strain rate-dependence due to their structure. The low stiffness means testing the materials at high strain rates is particularly difficult. Veryst has developed multiple test methods to test and model these materials.
Polymer Forming Simulation
Obtaining accurate results from finite element analyses of polymers is not easy. Polymers are often highly temperature- and rate-dependent, exhibiting significant stress-relaxation, creep, and recovery. In this forming case study, Veryst examines the steps required to produce an accurate constitutive model of an example polymer, polyether ether ketone (PEEK), and shows the consequences of oversimplification.
Polymer Material Models in Different FE Packages
All commercial FE packages provide material models for polymers, but Veryst Engineering’s PolyUMod® material library has advanced material models at the leading edge of polymer mechanics. We demonstrate the accuracy of a PolyUMod material model with native material models from Abaqus, ANSYS, and LS-DYNA.
Residual Tensile Strain Measurement in Polymers
Materials that have been deformed past their yield point and into the plastic strain region often display permanent deformation upon removal of load. How much of this deformation is truly permanent? Veryst has developed a method to measure the residual strain of materials following unloading as a function of time.
Testing of Climbing Shoe Rubbers
The material properties of a climbing shoe’s outsole rubber directly affect a rock climber’s performance. Veryst performed friction and compression testing of two climbing shoe rubbers to quantify and compare their performance.
Testing Polymers in Cryogenic Temperatures
Many engineering applications require understanding the behavior of polymers under cryogenic temperature conditions. Veryst developed a test fixture and method to test materials submerged in liquid nitrogen (LN2) at its boiling temperature of -196°C.
Tire Deformation
Tires experience large, complex deformation during use, and the highly filled rubbers are difficult to model. Veryst designed and calibrated a custom material model to capture the mechanical behavior of the tire to improve the design.

Service

Additive Manufacturing
Veryst Engineering helps clients realize high-performance additively manufactured parts. Our strong foundational knowledge in materials science and mechanics coupled with practical expertise in experimental methods and engineering software make us uniquely qualified to solve complex additive manufacturing challenges.
Adhesive Joints & Interfaces
Veryst assists clients with the selection of adhesive materials, development of bonding processes, and mechanical analysis of interfaces. We employ chemical characterization, mechanical testing, and advanced computational methods to design robust adhesively bonded structures and to understand delamination failures.

Can we help? Just want to keep in touch?